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MOTIVATION

NEW IDEAS IN DARK MATTER THEORY

▸ Old paradigm: weak scale dark matter (with relic density 
fixed by freeze-out)

DM

DM

time

ab
un

da
nc

e

Kolb and Turnernh�vi = H(T
fo

)
=) h�vi ' 1

(20 TeV)2
' g4wk

4⇡(2 TeV)2
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WEAK SCALE PARADIGM: UNDER ASSAULT10 Direct Detection Program Roadmap 39
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Figure 26. A compilation of WIMP-nucleon spin-independent cross section limits (solid curves), hints
for WIMP signals (shaded closed contours) and projections (dot and dot-dashed curves) for US-led direct
detection experiments that are expected to operate over the next decade. Also shown is an approximate
band where coherent scattering of 8B solar neutrinos, atmospheric neutrinos and di↵use supernova neutrinos
with nuclei will begin to limit the sensitivity of direct detection experiments to WIMPs. Finally, a suite of
theoretical model predictions is indicated by the shaded regions, with model references included.

We believe that any proposed new direct detection experiment must demonstrate that it meets at least one
of the following two criteria:

• Provide at least an order of magnitude improvement in cross section sensitivity for some range of
WIMP masses and interaction types.

• Demonstrate the capability to confirm or deny an indication of a WIMP signal from another experiment.

The US has a clear leadership role in the field of direct dark matter detection experiments, with most
major collaborations having major involvement of US groups. In order to maintain this leadership role, and
to reduce the risk inherent in pushing novel technologies to their limits, a variety of US-led direct search

Community Planning Study: Snowmass 2013
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MOTIVATION

WEAK SCALE PARADIGM: UNDER ASSAULT
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FIG. 7: Relevant processes for ATLAS 0-lepton+2-6 jet+MET analysis for Simplified Model
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FIG. 8: Relevant processes for ATLAS 1-2 lepton + 3-6 jet + MET analysis for Simplified Models

Sim1g and Sim1q.

IV. LHC CONSTRAINTS

In order to compare the standard searches for SUSY against those obtained in ADM, we

consider two ATLAS analyses with 20.3 fb�1 of data at 8 TeV. We have chosen the ATLAS,

instead of CMS, analyses in this study since the collaboration quotes the 95% confidence

limit, S95
exp, on the number of events from new physics, once the cuts of the analysis have

been applied. This allows us to simulate the SM plus new physics and easily extract the

constraint by simply taking the di↵erence with a simulation having the SM only. We utilize

1. an analysis with a lepton veto, 2-6 hard jets and high missing transverse energy (MET)

Emiss
T

[32]. We will refer to this analysis as“0 lepton+2-6 jet+MET analysis” (or “0

lepton analysis” for short);

2. an analysis with 1 or 2 leptons, 3-6 hard jets and high Emiss
T

[33]. We will refer to

this analysis as the “1-2 lepton+3-6 jet+MET analysis” (or “1-2 lepton analysis” for

18



MOTIVATION

TOWARDS LIGHT DARK MATTER

Dark Matter May Reside in a Hidden Sector

Dark MatterStandard Model Connector
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Hidden Valley paradigm, Strassler, KZ 2006

e.g. a stable dark pion

no weak force



MOTIVATION

BROAD RANGE OF MODELS

Dark MatterStandard Model Connector

Non-Abelian

Hidden Charged

Dark Disk

Supersymmetric

Baryogenesis

Atomic
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Figure 26. A compilation of WIMP-nucleon spin-independent cross section limits (solid curves), hints
for WIMP signals (shaded closed contours) and projections (dot and dot-dashed curves) for US-led direct
detection experiments that are expected to operate over the next decade. Also shown is an approximate
band where coherent scattering of 8B solar neutrinos, atmospheric neutrinos and di↵use supernova neutrinos
with nuclei will begin to limit the sensitivity of direct detection experiments to WIMPs. Finally, a suite of
theoretical model predictions is indicated by the shaded regions, with model references included.

We believe that any proposed new direct detection experiment must demonstrate that it meets at least one
of the following two criteria:

• Provide at least an order of magnitude improvement in cross section sensitivity for some range of
WIMP masses and interaction types.

• Demonstrate the capability to confirm or deny an indication of a WIMP signal from another experiment.

The US has a clear leadership role in the field of direct dark matter detection experiments, with most
major collaborations having major involvement of US groups. In order to maintain this leadership role, and
to reduce the risk inherent in pushing novel technologies to their limits, a variety of US-led direct search

Community Planning Study: Snowmass 2013
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NEW IDEAS IN DARK MATTER DETECTION

BROADENING THE SEARCHLIGHT

▸ New detection techniques to search for light dark matter 

▸ Sensitive to fainter whispers 

1. “Designer” materials 

2. Super-sensitive calorimeters with low dark counts 

▸ New modes to detect dark matter 

▸ Looking beyond billiard ball nuclear recoils



CURRENT STATUS

DIRECT DETECTION GOLD STANDARD

▸ Nuclear recoil experiments; basis of enormous 
progress in direct detection

µN ⌘ mNmX

mX +mN

v ⇠ 300 km/s ⇠ 10�3c for 50 GeV target

v ⇠ 10�3c

=) 2µNv = q
max

=
p
2mNED

=) ED ⇠ 100 keV

q, ED



CONTEXT

DARK MATTER LANDSCAPE

mass

100 GeV1 GeV1 MeV1 keV1 eV1 meV

Traditional WIMP 

XENON1T 

LZ

Semiconductors 

SuperCDMS

Absorption

Graphene

Super-
conductors

Superfluid 
Helium

~eV energy 
resolution

~keV energy 
resolution

~meV energy 
resolution

QCD axion, “ultralight frontier” Scintillators



CURRENT STATUS

NUCLEAR RECOILS

▸ Kinematic penalty when DM mass drops below nucleus 
mass

q
max

= 2mXv

ED & eV $ mX = 300 MeV

Ekin & 300 eVeven though

ED =
q2

2mN



CURRENT STATUS

COLLECTING HEAT

▸ Basic hurdle for detecting light DM: 

▸ Challenge: creating low enough noise environments to 
detect whispers 

▸ Fundamentally limited by the gap 

▸ In atoms, ionization energy is at least 10 eV 

▸ In semiconductors, band gap is typically > 1 eV

Rare events with little energy deposit!



CURRENT STATUS

COLLECTING HEAT

▸ Principles already in play in current direct detection 
experiments such as SuperCDMS 

▸ Large target; concentrate small energy deposits onto small 
calorimeters

Athermal*Phonon*Sensors*

Collect and Concentrate 
Phonon Energy into W TES 
(Transition Edge Sensor) 
 

R 

T 

5*

Transition Edge Sensor calorimeter

See talk by Pyle



CURRENT STATUS

NEXT UP: ELECTRON

▸ More bang for the buck if DM lighter than 1 GeV 

▸ Allows to extract all of DM kinetic energy for DM MeV 
and heavier

q
max

= 2mXv

ED & eV $ mX = 1 MeV

ED =
q2

2me



CURRENT STATUS

ELECTRONS IN MATERIALS

▸ In insulators, like xenon 

▸ In semi-conductors, like Ge, Si

Tightly bound; ionize for signal

Valence electrons become conducting; 
presence of collective modes
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FIG. 3. Left: Real and imaginary parts of the liquid xenon refractive index computed from tabulated atomic scattering factors and using the
Kronig-Kramers relation. Note that the maximum of the Im(n) function corresponds to the photoelectric cross section σγ ∼ 6×10−17cm2.
Right: Simulated events in ‘xenon-units’ of photo-electrons (PE) for various dark photon masses as labeled. Also shown are the reported
event counts and the background model as taken from [24].

This particular form is suitable for calculation, as we
can relate ΠT,L to tabulated optical properties of the
material. For an isotropic and non-magnetic medium,

ΠL = (ω2 − q⃗2)(1 − n2
refr), ΠT = ω2(1 − n2

refr), (19)

where nrefr is the (complex) index of refraction for elec-
tromagentism. When |q⃗| ≪ ω, ΠL = ΠT ≃ Π, and all
formulae for the absorption of L and T modes become
idential, as expected.
As the final step, we obtain nrefr from its relation to the

forward scattering amplitude f(0) = f1 + if2, where the
atomic scattering factors f1,2 are tabulated e.g. in [42].
Close to the ionization threshold we make use of the
Kramers-Kronig dispersion relations to relate f1 and f2
in estimating nrefr. Alternatively, one may establish an
integral equation relating the real and imaginary parts of
ε; see [31].
When m2

V ≫ Π, κL(T ) ≃ κ, and the in-medium modi-
fication of absorption can be negelected. In that case the
absorption rate per DM particle is

Γ ≃ κ2ω × Im n2
refr = κ2σγ ×

(

Nat

V

)

, (20)

leading to the same formula for the absorption rate per
atom as before, Eq. (12).

3.2. XENON10

The XENON10 data set from 2011 exemplifies the
power of ionization-sensitive experiments when it comes
to very low-energy absorption-type processes. With an
ionization threshold of ∼ 12 eV, the absorption of a

300 eV dark photon already yields about 25 electrons,
and the relatively small exposure of 15 kg-days is still
sufficient to provide the best limits on dark photons orig-
inating from the solar interior [31]. The same type of sig-
nature is used to provide important contraints on WIMP-
electron scattering [43, 44].
Despite significant uncertainties in electron yield, en-

ergy calibration, and few-electron backgrounds, we would
like to emphasize the fact that robust and conservative
limits can be derived which are independent of the above
systematics. The procedure is straightforward, and fol-
lows the one already outlined in [31]. First, we count all
ionization events (246) with up to 80 ionization electrons,
or, equivalently, within 20 keV of equivalent nuclear re-
coil. If we do not attempt to subtract backgrounds
(which is conservative), this implies a 90% C.L. upper
limit of less than 19.3 dark photon absorptions per kg per
day—irrespective of how many electrons are ultimately
produced (as long as the number is less than 80.) From
that integral limit we derive the ensuing XENON10 dark
photon dark matter constraint shown in Fig. 1. Remark-
ably, we observe that for 12 eV ! mV ! 200 eV the new
limit is stronger than the previously derived solar energy
loss constraint.

3.3. XENON100

The XENON100 collaboration has performed a low-
threshold search using the scintillation signal S1 with an
exposure of 224.6 live days and an active target mass
of 34 kg liquid xenon [24]. A very low background rate
of ∼ 5× 10−3/kg/day/keV has been achieved through a
combination of xenon purification, usage of ultra-low ra-

5

Germanium. Towards that end, we present an alternate
semi-analytic approach here to calculating the ionization
form factor, which is related to that in [19] but relies
on using the RHF wave functions for the electrons in
Germanium instead of hydrogenic wave functions. We
find significant di↵erences between the results of the two
approaches.

Another di↵erence to keep in mind when considering
semiconductor targets lies in the experimental method
of detection of a signal. While for atomic targets the fi-
nal state involves an electron-ion pair, for semiconductor
targets it involves creation of electron-hole pairs. These
final-state charge carriers are drifted using an applied
electric field, generating Luke-Neganov phonons. The
energy of the phonons is detected [3], giving a direct mea-
sure of the number of electron-hole pairs created by the
DM scattering.

The number of electron-hole pairs is a function of
the total energy E

d

deposited into the material by the
scattering DM, which is simply related to the elec-
tron recoil energy Eer and the binding energy E

b

:
E

d

= Eer + E
b

. The average energy deposited in or-
der to create an electron-hole pair for Germanium is
⇠2.9 eV above the band gap. Thus, we may define
the e↵ective number of electrons in the conduction band
to be n

e

= 1 + (E
d

� 0.67 eV)/(2.9 eV), taking into ac-
count that the initial scattering event promotes one elec-
tron from the valence band to the conduction band. We
will present results both in terms of E

d

and n
e

.
The electronic states in a semiconductor lattice are de-

scribed by Bloch wave functions,  k(r), which may be
expressed using Wannier functions:

 k(r) =
X

N

eik·RN�(r�R
N

) , (14)

where �(r) is a Wannier function localized at the site
R

N

, k are the wavevectors in the first Brillouin zone
(BZ) consistent with the lattice periodicity, and N is the
number of lattice sites. In the tight-binding approxima-
tion, the electrons at a given lattice site are assumed to
have limited interactions with the neighboring atoms. In
this case, an atom at a given lattice site is e↵ectively
isolated, and the Wannier functions are simply the free
atomic orbitals. Therefore, the Bloch wave function for
a given band is the sum over all lattice sites of the asso-
ciated atomic orbital.

For our purposes, the expression for the Bloch wave
function simplifies even further. The DM-electron inter-
action is localized to a single lattice site so long as the
momentum transfer is

q & (Ge lattice constant)�1 ⇠ 0.4 keV . (15)

In this case, the sum over lattice sites in (14) disappears
and the Bloch wave function is simply the free atomic
orbital at the scattering site.

For large enough momentum transfers, the wave func-
tion of the scattered electron can be approximated as a

I

II

III

IV

FIG. 3: Band structure of Germanium (left) and the resulting
density of states (right) used in the cross-section calculation.
Shown is the valence band associated with predominantly p-
like (III and IV, red), a combination of s- and p-like (II, green)
and predominantly s-like (I, blue) states. The k-vectors in the
band diagram correspond to a chosen set of high-symmetry
points in the first Brillouin zone, with � being the BZ center.
The reference level for the binding energy is taken to be the
bottom of the minimum-energy conduction band.

plane wave. Therefore, the total scattering cross section
is obtained by considering the transition of an electron
from a localized initial-state atomic wave function–with
a k-dependent binding energy–to a final-state wave func-
tion with plane-wave solution, at some energy Eer above
the conduction band minimum. The atomic scattering
can be calculated using the same prescription as that
described in Sec. II A, with the appropriate RHF wave
functions for Germanium.
We are interested in the directionally-averaged rate, for

which the variability of the initial bound-state energy E
b

with k may be captured by the valence-band density of
states ⇢(E

b

) (see, for example, [19]); the total di↵erential
event rate is then obtained by integrating over all binding
energies, weighted by the density of states:

dR

d lnEer
⇡ N

T

⇢
�

m
�

F (k0)

Z
dE

b

⇢(E
b

)
dh�ionvi
d lnEer

. (16)

The isotropic valence-band density of states (Fig. 3)
is computed using the GPAW package [36], a density-
functional theory code based on the projector-augmented
wave method. For Germanium, the density of states
is peaked at bound-state energies of ⇠4, 8, and 12 eV.
These peaks correspond to predominantly p-like (III and
IV, red), an admixture of s- and p-like (II, green) and
predominantly s-like (I, blue) states in the band struc-
ture [37].
It would seem that—depending on the binding

energy—we should take a di↵erent combination of s- and
p-like atomic wave functions when calculating the expres-
sion for dh�ionvi/d lnEer that enters into (16). However,
we find in practice that taking either the s- or p-like wave
functions independently leads to very similar results for
the scattering rate as can be seen from Fig. 2. As such,
we will work with either pure s- or p-like wave functions

An, Pospelov, Pradler, Ritz 1412.8378

Lee, Lisanti, Safdi 1508.07361

Gap!

Gap!



CURRENT STATUS

ELECTRONS IN MATERIALS

3

of outgoing electrons are found by numerically solving
the radial Schrödinger equation with a central potential
Z
e↵

(r)/r. Z
e↵

(r) is determined from the initial electron
wavefunction, assuming it to be a bound state of the same
central potential. We evaluate the form-factors numeri-
cally, cutting o↵ the sum at large l0, L once it converges.
Only the ionization rates of the 3 outermost shells (5p,
5s, and 4d, with binding energies of 12.4, 25.7, and 75.6
eV, respectively) are found to be relevant.

The energy transferred to the primary ionized electron
by the initial scattering process is ultimately distributed
into a number of (observable) electrons, n

e

, (unobserved)
scintillation photons, n

�

, and heat. To calculate n
e

, we
use a probabilistic model based on a combined theoreti-
cal and empirical understanding of the electron yield of
higher-energy electronic recoils. Absorption of the pri-
mary electron energy creates a number of ions, N

i

, and
a number of excited atoms, N

ex

, whose initial ratio is
determined to be N

ex

/N
i

⇡ 0.2 over a wide range of ener-
gies above a keV [18, 19]. Electron–ion recombination ap-
pears well-described by a modified Thomas-Imel recombi-
nation model [20, 21], which suggests that the fraction of
ions that recombine, f

R

, is essentially zero at low energy,
resulting in n

e

= N
i

and n
�

= N
ex

. The fraction, f
e

,
of initial quanta observed as electrons is therefore given
by f

e

= (1 � f
R

)(1 + N
ex

/N
i

)�1 ⇡ 0.83 [21]. The total
number of quanta, n, is observed to behave, at higher
energy, as n = E

er

/W , where E
er

is the outgoing energy
of the initial scattered electron and W = 13.8 eV is the
average energy required to create a single quanta [23].
As with f

R

and N
ex

/N
i

, W is only well measured at en-
ergies higher than those of interest to us, and thus adds
to the theoretical uncertainty in the predicted rates. We
use N

ex

/N
i

= 0.2, f
R

= 0 and W = 13.8 eV to give
central limits, and to illustrate the uncertainty we scan
over the ranges 0 < f

R

< 0.2, 0.1 < N
ex

/N
i

< 0.3,
and 12.4 < W < 16 eV. The chosen ranges for W and
N

ex

/N
i

are reasonable considering the available data
[9, 18, 19, 22]. The chosen range for f

R

is conserva-
tive considering the fit of the Thomas-Imel model to low-
energy electron-recoil data [20].

We extend this model to DM-induced ionization as fol-
lows. We calculate the di↵erential single-electron ion-
ization rate following Eqs. (1–3). We assume the scat-
tering of this primary electron creates a further n(1) =
Floor(E

er

/W ) quanta. In addition, for ionization of the
next-to-outer 5s and 4d shells, we assume that the pho-
ton associated with the de-excitation of the 5p-shell elec-
tron, with energy 13.3 or 63.1 eV, can photoionize, cre-
ating another n(2) = 0 (1) or 4 quanta, respectively, for
W > 13.3 eV (< 13.3 eV). The total number of detected
electrons is thus n

e

= n0

e

+ n00

e

, where n0

e

represents the
primary electron and is thus 0 or 1 with probability f

R

or (1 � f
R

), respectively, and n00

e

follows a binomial dis-
tribution with n(1) + n(2) trials and success probability
f
e

. This procedure is intended to reasonably approxi-
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FIG. 2: Top: Expected signal rates for 1-, 2-, and 3-electron
events for a DM candidate with �e = 10�36 cm2 and FDM = 1.
Widths indicate theoretical uncertainty (see text). Bottom:
90% CL limit on the DM–electron scattering cross section
�e (black line). Here the interaction is assumed to be in-
dependent of momentum transfer (FDM = 1). The dashed
lines show the individual limits set by the number of events
in which 1, 2, or 3 electrons were observed in the XENON10
data set, with gray bands indicating the theoretical uncer-
tainty. The light green region indicates the previously allowed
parameter space for DM coupled through a massive hidden
photon (taken from [2]).

mate the detailed microscopic scattering processes, but
presents another O(1) source of theoretical uncertainty.
The 1-, 2-, and 3-electron rates as a function of DM mass
for a fixed cross section and F

DM

= 1 are shown in Fig. 2
(top). The width of the bands arises from scanning over
f
R

, N
ex

/N
i

and W , as described above, and illustrates
the theoretical uncertainty.

RESULTS. Fig. 2 (bottom) shows the exclusion limit in
the m

DM

-�
e

plane based on the upper limits for 1-, 2-,
and 3-electrons rates in the XENON10 data set (dashed
lines), and the central limit (black line), corresponding
to the best limit at each mass. The gray bands show the
theoretical uncertainty, as described above. This bound
applies to DM candidates whose non-relativistic inter-
action with electrons is momentum-transfer independent
(F

DM

= 1). For DM masses larger than ⇠15MeV, the
bound is dominated by events with 2 or 3 electrons, due
to the small number of such events observed in the data
set. For smaller masses, the energy available is insu�-
cient to ionize multiple electrons, and the bound is set
by the number of single-electron events. The light green
shaded region shows the parameter space spanned by

Prospects for Upcoming DM–Electron Scattering Searches
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Figure 1. Selected near-term projections for the
DAMIC (green curves) and SuperCDMS-silicon (dark
red curves) experiments, for different ionization thresh-
olds and (background-free) exposures, as indicated. Solid
curves show the 95% C.L. exclusion reach from sim-
ple counting searches, while dashed curves show the
5�-discovery reach from annual modulation searches.
The gray shaded region shows the current XENON10
bound [31], while the shaded green region shows the es-
timated (much weaker) bound from 2012 DAMIC data
with a ⇠11-electron-hole pair threshold. The projections
for SuperCDMS-germanium (not shown) are comparable
to silicon. See §6.5 for more details. The three plots show
results for the different indicated DM form factors, corre-
sponding to different DM models.

expands on the previous calculation in [9]. Higher recoil energies for the scattered electron allow
a larger number of additional electron-hole pairs to be promoted via secondary scattering. Using
a semi-empirical understanding of these secondary scattering processes, we convert our calculated
differential event rate to an estimated event rate as a function of the number of observed electron-hole
pairs. These results will allow several experimental collaborations, such as DAMIC and SuperCDMS,
to calculate their projected sensitivity to the DM-electron scattering cross-section, given their specific
experimental setups and thresholds. It will also allow them to derive limits on this cross section in the
absence of a signal, or the preferred cross section value should there be a signal, in forthcoming data.

– 4 –

Essig et al 1509.01598
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▸ In insulators, like xenon 

▸ In semi-conductors, like Ge, Si

Tightly bound; ionize for signal
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Figure 2.2: Energy dispersion obtained within the tight-binding approximation, for
tnnn/t = 0.1. One distinguishes the valence (π) band from the conduction (π∗) band. The
Fermi level is situated at the points where the π band touches the π∗ band. (a) Energy
dispersion as a function of the wave-vector components kx and ky. (b) Cut throught the
energy dispersion along characteristic lines (connecting the points K → Γ → M → K.
The energy is measured in units of t and the wave vectors in units of 1/a.

Energy dispersion of π electrons in graphene

The energy dispersion (2.22) is plotted in Fig. 2.2 for tnnn/t = 0.1. It
consists of two bands, labeled by the index λ = ±, each of which contains
the same number of states. Because each carbon atom contributes one π
electron and each electron may occupy either a spin-up or a spin-down state,
the lower band with λ = − (the π or valence band) is completely filled and
that with λ = + (the π∗ or conduction band) completely empty. The Fermi
level is, therefore, situated at the points where the π band touches the π∗

band. Notice that, if tnnn = 0, the energy dispersion (2.22) is electron-hole
symmetric, i.e. ϵλk = −ϵ−λ

k . This means that nnn hopping and nn overlap
corrections break the electron-hole symmetry. The points, where the π band
touches the π∗ band, are called Dirac points, for reasons that are explained
in the following chapter. They situated at the points kD where the energy
dispersion (2.22) is zero,

ϵλkD = 0. (2.24)

See talks by Lisanti, Tully
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FIG. 1: (left) Graphene is comprised of two triangular carbon sub-lattices, which are illustrated by the open and solid circles.
The lattice vectors a1,2 are indicated by the red arrows, and the nearest-neighbor vectors R1,2,3 are shown in purple. The gray
diamond depicts the unit cell. The nearest-neighbor distance is a = 0.142 nm. (right) The valence-band diagram for graphene,
as determined from the procedure outlined in the Appendix. The Brillouin zone is shown in the inset, with the high-symmetry
points �, K, and M labeled.

and p
y

orbitals, such that the energy eigenstates (called �
bonds) are linear combinations of 2s, 2p

x

, and 2p
y

. The
out-of-plane p

z

orbitals remain unhybridized and form
covalent bonds, called ⇡. We outline the important fea-
tures of the unhybridized ⇡ electron wavefunction here,
relegating further details and a discussion of the � elec-
trons to the Appendix.

Within the tight-binding model, we approximate the
wavefunction by a sum over nearest neighbors, corre-
sponding to four lattice sites. The Bloch function for
a ⇡ electron is given by

 
⇡

(`, r) ⇡ N`

0

@�2p
z

(r) + ei'`

3X

j=1

ei`·Rj �2p
z

(r�R

j

)

1

A

(1)
for lattice momentum ` = (`

x

, `
y

) 2 BZ in the Brillouin
zone (inset of Fig. 1, right). Here, N` is a normalization
constant, R

j

are the nearest-neighbor vectors, and '` is
an `-dependent phase. We take a hydrogenic orbital for
the 2p

z

wavefunction of carbon,

�2p
z

(r) = N a
�3/2
0

r

a0
e�Zeffr/2a0 cos ✓ , (2)

where a0 is the Bohr radius and N is the normalization.
The e↵ective nuclear charge Ze↵ ' 4.03 is chosen to fit
the numerical solution for the overlap between adjacent
2p

z

orbitals. The Fourier transform of Eq. (1) is

e 
⇡

(`,k) = N`

�
1 + ei'` f (` + k)

� e�2p
z

(k), (3)

where k is the momentum conjugate to r, f(` + k)
is a sum of phase factors (defined in the Appendix),

and the Fourier transform of the atomic orbital is well-
approximated by

e�2p
z

(k) ⇡ eN a
3/2
0

a0 k
z⇣

a2
0 |k|2 + (Ze↵/2)2

⌘3 (4)

with normalization eN . Note that the electron wavefunc-
tion has Fourier components at all k values, as it is an
energy eigenstate but not a momentum eigenstate.

Analytic forms for the � electron wavefunctions are
also possible to derive, but are more complicated than
their ⇡ counterparts because the coe�cients of the basis
orbitals must be computed by diagonalizing a 6⇥6 Hamil-
tonian, as discussed in the Appendix. The ⇡ (�1) elec-
trons have binding energies ⇠0–6 (13–18) eV, as shown
in Fig. 1 (right).

The cross section for a DM particle of mass m
�

and
initial velocity v to scatter o↵ an electron in band i =
⇡, �1, �2, �3 with lattice momentum ` is

v �
i

(`) =
�̄
e

µ2
e�

Z
d3k

f

(2⇡)3
d3q

4⇡
|FDM(q)|2

���e 
i

(`,q� k

f

)
���
2

⇥ �

 
k2
f

2m
e

+ E
i

(`) + �+
q2

2m
�

� q · v
!

, (5)

where �E
i

(`) is the band energy, m
e

is the electron mass,
k

f

is the final electron momentum, q is the momen-
tum transfer, and µ

e�

is the DM-electron reduced mass.
� ' 4.3 eV is the work function of graphene [34], de-
fined as the energy di↵erence between the Fermi surface

Symmetry structure of material 
gives rise to special points with 

no gap
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FIG. 2: (left) Di↵erential rate for a 100 MeV DM particle scattering o↵ an electron in graphene with �̄e = 10�37 cm2 and
FDM(q) = 1. The solid black line denotes the total rate, while the dashed lines show the contributions for electrons in the
individual ⇡ and � bands. For comparison, the di↵erential rate for germanium, taken from Ref. [25], is shown in gray; the band
denotes the variation due to scattering o↵ the 4s or 4p valence electron. (right) Expected background-free 95% C.L. sensitivity
for a graphene target with a 1-kg-year exposure (black). Also plotted are the analogous curves for germanium [25] with 1-
electron (solid purple) and 5-electron (dashed purple) thresholds including the variation due to 4s/4p bands, and exclusions
from Xenon10 [23] (shaded gray). We consider both heavy-mediator exchange, which leads to FDM(q) = 1, and light-mediator
exchange, FDM(q) = (↵me/q)

2 (inset).

and the vacuum.2 Following Ref. [22], we define �̄
e

⌘
µ

2
e�

16⇡m2
�

m

2
e

|M
e�

(q)|2
���
q

2=↵

2
m

2
e

, with |M
e�

(q)|2 the spin-

averaged amplitude, to be the scattering cross section for
DM o↵ a free electron with q = ↵ m

e

. The momentum
dependence of the matrix element is then absorbed into
the DM form factor FDM(q) = |M

e�

(q)|/|M
e�

(↵ m
e

)| .
We do not include the so-called Fermi factor, which en-
hances the rate at low recoil energies due to the distortion
of the outgoing electron wavefunction by the Coulomb
field of the nucleus. This factor is significant for bulk
materials, but negligible for a 2D material for two rea-
sons: the ionized electron energy must be high enough
to overcome the work function, and the ionized electron
travels single-atom distances and thus spends little time
in the vicinity of the nucleus.

To obtain the total rate per unit time and detector
mass, we must integrate Eq. (5) over all ` 2 BZ and all
incoming DM velocities, then sum the contributions from
the four valence bands:

R = 2
X

i=⇡,�1,2,3

⇢
�

m
�

NC Auc

Z
d2`

(2⇡)2
d3v g(v) v �

i

(`) ,

(6)
where g(v) is the DM velocity distribution, Auc =

2
The work function is not an intrinsic property of graphene, and

can be manipulated with a suitable choice of substrate; see e.g.,
Ref. [35].

3
p

3a2/2 is the area of the unit cell, NC ' 5⇥ 1025 kg�1

is the density of carbon atoms in graphene, and ⇢
�

'
0.4 GeV/cm3 is the local DM density [36]. The factor of
two in Eq. (6) accounts for the degenerate spin states in
each band.

The kinematics of the scattering process dictate that
there is a minimal DM velocity required to eject an elec-
tron of momentum k

f

from the target via a momentum
transfer q:

vimin(`, k
f

, q) =
Eer + E

i

(`) + �

q
+

q

2m
�

, (7)

where Eer ⌘ k2
f

/2m
e

. For an electron at the Fermi
surface with E

i

(`) = 0, the minimum q needed for
vmin = vesc = 550 km/s is qmin ' 2 keV. Comparing
this with the inverse atomic spacing 2⇡/a ' 8.7 keV, we
see that all kinematically allowed scattering is localized
to only a few unit cells, with most confined to a single
one. We have verified numerically for the ⇡ band that
the nearest-neighbor approximation made in Eq. (1) is
su�cient.
Rate results. We assume an isotropic velocity distri-

bution g(v) = g(v) following the Standard Halo Model
[37], with v0 ' 220 km/s [38] and escape velocity vesc '
550 km/s [39]. Fig. 2 (left) shows the di↵erential scat-
tering rate for a 100 MeV DM particle. The total rate
(solid black line) is comparable to that for a germanium
target (gray band). The contributions from the individ-
ual ⇡ and � electrons are indicated by the dashed lines.
Although electrons in the lowest two � bands contribute
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Figure 3:The density of electronic states in the close vicinity of the Fermi energy !!. (a) For a normal metal, the density of states is basically
constant.The dark colored area indicates the occupied states according to the Fermi-Dirac statistic at finite temperature. (b) In the case of a
superconductor, an energy gap opens around !!; it grows continuously as the temperature is reduced below "". The dotted arrow indicates
possible excitations of the occupied states above the gap [first term in (1)], leading to a quasiparticle peak at# = 0. For the electronic excitations
shown by the solid arrow, a minimum energy of 2Δ is required; their contribution is captured by the second term in (1).The dark shaded area
up to |Δ(") + ℏ#| indicates states that can contribute to the conductivity by absorption of photons of arbitrary energy ℏ#. (c)The full size of
the superconducting energy gap is given by 2Δ 0 for " = 0. No quasiparticle peak is present, leading to absorption only above ## = 2Δ/ℏ.The
states removed from the gap area are pilled up below and above the gap, leading to a !/√!2 − Δ20 divergency.
factor relevant for these excitations.The so-called coherence
factor ((Ek,Ek!) describes the scattering of a quasiparticle
from a state k with energyEk to a state k$ = k+qwith energy
Ek! = Ek + ℏ# upon absorption of a photon with energy ℏ#
and momentum q. If summed over all k values, it reads [41–
43, 46] ( (Δ,E,E$) = 12 (1 + Δ2EE$) . (5)

Only for energies below the gap 2Δ, this factor is appreciable:( ≈ 1 for ℏ# ≪ 2Δ. For ℏ# ≥ 2Δ, the coherence
factors are reversed, and ( vanishes in the present case. For
large energies, the coherence effects become negligible since
E,E$ ≫ 2Δ and ( ≈ 1/2. Hence the coherence peak is
seen as a maximum in 11(") in the low-frequency limit;

it becomes smaller with increasing frequency and shifts to
higher temperatures.The height of the peak has the following
frequency dependence:

(111%)max
∼ log {2Δ (0)ℏ# } . (6)

The peak disappears completely for ℏ# ≥ Δ/2 (well below2Δ). At " = 0 and # < 2Δ/ℏ the complex part of the
conductivity12/1% describes the response of the Cooper pairs
and is related to the gap parameter through the expression12 (")1% ≈ 7Δ (")ℏ# tanh{Δ (")29&"} ≈ lim'→ 07Δ (0)ℏ# . (7)



CONTEXT

DARK MATTER LANDSCAPE

mass

100 GeV1 GeV1 MeV1 keV1 eV1 meV

Traditional WIMP 

XENON1T 

LZ

Semiconductors 

SuperCDMS

Absorption

Graphene

Super-
conductors

Superfluid 
Helium

~eV energy 
resolution

~keV energy 
resolution

~meV energy 
resolution

QCD axion, “ultralight frontier”



SUPERCONDUCTORS

ABSORPTION
5

10�4 10�3 10�2 10�1 100 101 102

mV [eV]

10�16

10�14

10�12

10�10

10�8

�

Stellar constraints
(Stuckelberg case)

HB stars (Higgs case, e�=0.1)

Resonant
LC Xenon10

1 kg-day

1 kg-yr

FIG. 2. Estimated sensitivity of an aluminum superconductor target for 1-kg-year (thick solid blue) and 1-kg-day (thin
solid blue) exposures, for absorption of dark photon relic dark matter. For comparison, we show solar and horizontal branch
constraints for the Stueckelberg (shaded red) and Higgs cases (dashed green) [17]; Xenon10 bounds (shaded purple) [18]; and
the projected reach for an LC circuit experiment (shaded gray) [19].

case, the bounds depend on the charge of the dark Higgs
under a dark U(1) (denoted e0, with e0  constrained),
while in the latter case there is no such dependence; see
Refs. [17, 24] for details. These constraints are depicted
in Fig. 2, marked as ‘Higgs’ and ‘Stueckelberg’ accord-
ingly.

A recent proposal to detect the hidden photon field
with resonant LC circuits [19] estimates strong sensitivity
below 3 meV (and extending as far down as 10�12 eV).
These projections are shown in the gray shaded region of
Fig. 2. A multiplexed version of this experiment could
potentially reach mixings of  ⇠ 10�16 for meV masses.

We learn that an aluminum superconductor target
with a kg-year exposure can be more sensitive than stel-
lar constraints over the entire mass range of interest,
from 1 meV to 1 eV, if the dark photon obtains its
mass via a Stueckelberg mechanism. If a dark Higgs is
present, superconducting targets with a kg-year exposure
are stronger probes than horizontal branch stars for vec-
tor masses heavier than about 20 meV, for e0 ⇠ 0.1. Since
stellar emission depends on the stellar environment and
as such is model-dependent, direct detection provides a
strong orthogonal probe to such constraints.

B. Pseudoscalars

We now proceed to absorption of pseudoscalars cou-
pling to electrons:

Ce

2fa
(@µa)ē�µ�5e . (16)

For DFSZ axions, Ce = 1

3

cos2 �, and for KSVZ ax-
ions where the electron-coupling is only loop-induced,
Ce / ↵2. We parameterize our reach in terms of an
e↵ective electron coupling, gaee = Ceme/fa. Compar-
ing the matrix element squared to the case of a photon,
we find similar ~Q-dependence (see Appendix B), and the
DM absorption rate is

R = 3
m2

a

4m2

e

g2

aee

e2

�
1

⇢
DM

m
DM

1

⇢
. (17)

The expected reach into the parameter space of pseu-
doscalar DM via absorption on an Aluminum supercon-
ducting target is shown in Fig. 3. Stellar constraints
on axions are shown as well — the pseudoscalar-electron
coupling allows for emission of light pseudoscalars in the
mass range of interest in electron-dense environments
such as white dwarfs (denoted ‘WD’). The cooling curves
of white dwarfs give the strongest constraints on the
electron coupling over our entire mass range [25]. In
fact, some of the data are in favor of a new weakly
coupled particle [26]. For completeness, we also show
the relation between mass and fa for the QCD axion,
(0.60 meV/ma) = (fa/1010 GeV), taking as an upper
value Ce = 1/3.

Given an electron coupling, a loop-induced coupling of
the pseudoscalar to photons arises,

↵

8⇡

gaee

me
aFµ⌫ F̃µ⌫ . (18)

If the pseudoscalar couples to other charged particles,
this photon coupling will be modified by an O(1) factor.

See T. Lin’s talk

Dark Photon

2

same way that superconductors and metals are excellent
absorbers of electromagnetic fields. For instance, we find
that a kg-day exposure on a superconducting target is
su�cient to exceed the stellar constraints for a hidden
photon whose mass is obtained via the Stuckelberg mech-
anism.

The outline of this paper is as follows. In Section IIA
we discuss how metals can be e�cient absorbers of low
mass particles. The process we consider involves ab-
sorbing all the mass-energy of the DM particle via an
electron recoil, with emission of an athermal phonon to
conserve momentum. We then describe in Sections II B
and II C our method to determine the DM absorption
rate from the optical properties of a metal. In Section III
we present the reach of superconducting detectors for ul-
tralight DM that couples to electrons, including hidden
photons, pseudoscalars, and scalars. We conclude in Sec-
tion IV.

II. DARK MATTER ABSORPTION WITH
SUPERCONDUCTORS

We begin by describing the DM absorption process, be-
fore computing its rate in a superconductor. We compare
our results for consistency against the standard Drude
theory for low-energy photon absorption in metals. Then,
in order to obtain accurate predictions at higher (& 0.1
eV) energies, we relate the DM absorption rate to mea-
sured photon absorption rates.

A. General Principle: Phonon emission

Absorption of low energy particles in a superconductor
can proceed when the energy of the absorbed radiation
(in this case the mass of the DM particle) exceeds the su-
perconducting gap. In the absorption process, a Cooper
pair is broken, and a pair of excitations is created. These
excitations have a long recombination and thermalization
time (of order a few milliseconds in aluminum), which al-
lows for their collection and measurement, as described
in Refs. [23, 24]. Once the energy of the absorbed par-
ticle significantly exceeds the superconducting gap, the
absorption process is identical in the superconducting
and normal phases of a metal. There are several ways
to absorb a particle (be it a photon or DM) in a metal.
One way is via impurities, where an o↵-shell electron pro-
duced in the absorption process becomes on-shell through
interaction with an impurity. In the case of interest here,
however, the target superconductor must be ultrapure in
order to enable the collection and measurement of the
created athermal excitations, and so this possibility is
not viable.

Instead, we make use of another process – that of par-
ticle absorption on electrons through the emission of an
athermal phonon in the final state, as shown in Fig. 1.
The emitted phonon is required for momentum conser-

X �

e e

q Q

k k0

X �

e e

q Q

k k0

FIG. 1. Absorption process on electrons for an incoming relic
particle X, where a phonon � is emitted in the final state:
X(q) + e(k) ! e(k0) + �(Q).

vation of the target material. Consider an electron with
initial momentum ~ki and energy Ei = ~k2

i /(2me). Assum-
ing the electron absorbs a single particle of energy !, the
final momentum of the electron is ~kf = ~ki +~q and energy
conservation gives

(~ki + ~q)2

2me
=

~k2

i

2me
+ !. (1)

(Note that momentum on the lattice is conserved up to an
additive reciprocal lattice vector, ~K. For electrons, the
typical energy scale associated with transitions involving
~K is K2/2me ⇠ 10 eV, which is above the energies con-
sidered here.) Then the required momentum transfer to

the electron is |~q| ⇠ !(me/|~ki|) ⇠ !/vF ⇠ 100 !, where
vF is the Fermi velocity. This cannot be satisfied for an
on-shell DM particle in the halo, which carries momen-
tum ⇠ 10�3!. However, energy and momentum can still
be conserved if a phonon with momentum ⇠ �~q is emit-
ted by the electron in the final state; in other words, the
electron recoils against the lattice. The emitted phonon
carries away a fraction of the excitation energy, but can
balance the large recoil momentum of the electron.

In the Debye model, the dispersion relation of a phonon
with 4-momentum (⌦, ~Q) is given by

⌦ = cs| ~Q| (2)

where the speed of sound in aluminum is cs '
6320 m/sec ⇠ 2 ⇥ 10�5 in natural units. There is a
maximum frequency !D = cskD for phonons, where the
maximum wavevector for lattice vibrations kD ⇠ 1/a
is set by the lattice spacing a. For aluminum, !D ⇡
0.037 eV; therefore the maximum phonon energy is rel-
atively low, but the maximum momentum can be much
higher, !D/cs ⇡ keV.

B. Dark Matter Absorption

We now turn to computing the rate of DM absorption
in a material. The total DM absorption rate per unit
mass per unit time R is

R =
1

⇢

⇢X
mX

hne�abs

v
rel

i , (3)

xκ
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within a recent Dynamic Many-Body theory [20]. The-
oretical and experimental results for S(Q,!) in a broad
sector of the spectrum can be compared directly, leading
to an unprecedentedly accurate description of the dynam-
ics of superfluid 4He.

The inelastic neutron scattering measurements were
performed on the neutron time-of-flight spectrometer IN5
at the Institut Laue-Langevin using an incoming energy
of 3.55meV (wavelength 4.8 Å) and an energy resolution
at elastic energy transfer of 0.07meV. The high-purity su-
perfluid 4He sample was contained in a thin-walled cylin-
drical aluminum container of inner diameter 15mm. The
e↵ective sample height in the beam was 50mm. Cad-
mium disks were placed inside the cell at intervals of
10mm to reduce multiple scattering, an important exper-
imental artifact discussed below. The cell was connected
to the mixing chamber of a dilution refrigerator via a
copper piece equipped with silver sinter to ensure good
thermal contact, thereby allowing measurements to be
done at very low temperatures, T < 100mK. The mea-
surements were performed at saturated vapor pressure.

The quantity measured by a neutron spectrometer –the
inelastic di↵erential scattering cross section per target
atom– is proportional to the dynamic structure factor:
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b2c
~
k0

k
S(Q,!)

where bc is the bound atom coherent scattering length, k
and k0 the neutron wave vector before and after the scat-
tering process, Q the wave vector transfer and ~! the
energy transfer [9]. Standard data reduction routines
[21] were used to obtain the dynamic structure factor
from the neutron raw spectra. The magnitude of S(Q,!)
was normalized by requiring that the single quasiparticle
strength Z(Q) = 0.93 for Q = 2.0 Å�1, a value ob-
tained from previous works [9, 10, 20]. Fig. 1a displays
essentially the raw data, after the usual corrections. The
aluminum cell elastic background, measured before in-
troducing the helium in the cell, was subtracted from
the raw spectra. This led to the noisy region seen in Fig.
1a near zero energy. We also subtracted the inelastic sig-
nal originating from scattering events involving the alu-
minum cell and the helium sample. Rotons, due to their
high density of states, dominate these processes, and this
contribution is only significant at the roton energy. Since
it is essentially Q-independent, it can be easily identified
and removed. The subtraction of this contribution spoils
the accuracy of the data in a small range around the ro-
ton energy in regions of the spectrum where the signal
is small. The e↵ect can be seen if the intensity scale is
considerably expanded, for instance as in Fig. 2.

While earlier neutron scattering experiments [10–13]
revealed the presence of broad, rather featureless multi-
particle excitation regions above the single-particle dis-
persion curve, the improved precision (and possibly the
much lower temperature) in the present experiment al-

FIG. 1. (color online) (a) S(Q,!) of superfluid 4He measured
as a function of wave vector and energy transfer, at satu-
rated vapor pressure and temperature T  100mK. Con-
tributions involving scattering with the aluminium cell have
been subtracted, but not multiple scattering within the he-
lium. (b) Helium multiple scattering contribution (numer-
ical simulation); note that its magnitude is comparable to
the multi-particle intensity seen in panels (c) and (d), and in
Fig. 3. The dashed lines show the limits of the instrumen-
tal range, also valid for figures a and c. (c) Experimental
dynamic structure factor S(Q,!) after correction for multi-
ple scattering. (d) Dynamic many-body theory calculation of
S(Q,!). Note that all the detailed features of the experimen-
tal data are reproduced. The units of the contour plots scale
are meV�1. The intensity is cut o↵ at 0.07meV�1 in order to
emphasize the multi-excitations region. The apparent width
of the Landau excitations in the experimental plot is due to
the experimental resolution of 0.07meV, while the calculated
Landau dispersion curve has been highlighted by a thick line.

lowed us to observe a very rich structure in this region,
with increasing weight at large wave vectors, as seen in
the measured S(Q,!) shown in Fig. 1a.
It is particularly important to distinguish the multi-

particle excitations under investigation, which are an in-
trinsic property of helium, from multiple scattering. The
former arise when a neutron creates in a single process
a high energy perturbation which can decay into two or
more excitations, while the latter is a spurious e↵ect,
dependent on the sample size, where a single neutron
creates two or more excitations in successive scatter-
ing events. Since the two kinds of processes fulfill the
same kinematic conservation rules, and their contribu-
tions have similar intensity for typical sample sizes, sub-
tracting multiple scattering from the raw data is essential
when dealing with the multi-particle region of the spec-
trum.
It is di�cult in practice to determine this contribution
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within a recent Dynamic Many-Body theory [20]. The-
oretical and experimental results for S(Q,!) in a broad
sector of the spectrum can be compared directly, leading
to an unprecedentedly accurate description of the dynam-
ics of superfluid 4He.

The inelastic neutron scattering measurements were
performed on the neutron time-of-flight spectrometer IN5
at the Institut Laue-Langevin using an incoming energy
of 3.55meV (wavelength 4.8 Å) and an energy resolution
at elastic energy transfer of 0.07meV. The high-purity su-
perfluid 4He sample was contained in a thin-walled cylin-
drical aluminum container of inner diameter 15mm. The
e↵ective sample height in the beam was 50mm. Cad-
mium disks were placed inside the cell at intervals of
10mm to reduce multiple scattering, an important exper-
imental artifact discussed below. The cell was connected
to the mixing chamber of a dilution refrigerator via a
copper piece equipped with silver sinter to ensure good
thermal contact, thereby allowing measurements to be
done at very low temperatures, T < 100mK. The mea-
surements were performed at saturated vapor pressure.

The quantity measured by a neutron spectrometer –the
inelastic di↵erential scattering cross section per target
atom– is proportional to the dynamic structure factor:
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where bc is the bound atom coherent scattering length, k
and k0 the neutron wave vector before and after the scat-
tering process, Q the wave vector transfer and ~! the
energy transfer [9]. Standard data reduction routines
[21] were used to obtain the dynamic structure factor
from the neutron raw spectra. The magnitude of S(Q,!)
was normalized by requiring that the single quasiparticle
strength Z(Q) = 0.93 for Q = 2.0 Å�1, a value ob-
tained from previous works [9, 10, 20]. Fig. 1a displays
essentially the raw data, after the usual corrections. The
aluminum cell elastic background, measured before in-
troducing the helium in the cell, was subtracted from
the raw spectra. This led to the noisy region seen in Fig.
1a near zero energy. We also subtracted the inelastic sig-
nal originating from scattering events involving the alu-
minum cell and the helium sample. Rotons, due to their
high density of states, dominate these processes, and this
contribution is only significant at the roton energy. Since
it is essentially Q-independent, it can be easily identified
and removed. The subtraction of this contribution spoils
the accuracy of the data in a small range around the ro-
ton energy in regions of the spectrum where the signal
is small. The e↵ect can be seen if the intensity scale is
considerably expanded, for instance as in Fig. 2.

While earlier neutron scattering experiments [10–13]
revealed the presence of broad, rather featureless multi-
particle excitation regions above the single-particle dis-
persion curve, the improved precision (and possibly the
much lower temperature) in the present experiment al-

FIG. 1. (color online) (a) S(Q,!) of superfluid 4He measured
as a function of wave vector and energy transfer, at satu-
rated vapor pressure and temperature T  100mK. Con-
tributions involving scattering with the aluminium cell have
been subtracted, but not multiple scattering within the he-
lium. (b) Helium multiple scattering contribution (numer-
ical simulation); note that its magnitude is comparable to
the multi-particle intensity seen in panels (c) and (d), and in
Fig. 3. The dashed lines show the limits of the instrumen-
tal range, also valid for figures a and c. (c) Experimental
dynamic structure factor S(Q,!) after correction for multi-
ple scattering. (d) Dynamic many-body theory calculation of
S(Q,!). Note that all the detailed features of the experimen-
tal data are reproduced. The units of the contour plots scale
are meV�1. The intensity is cut o↵ at 0.07meV�1 in order to
emphasize the multi-excitations region. The apparent width
of the Landau excitations in the experimental plot is due to
the experimental resolution of 0.07meV, while the calculated
Landau dispersion curve has been highlighted by a thick line.

lowed us to observe a very rich structure in this region,
with increasing weight at large wave vectors, as seen in
the measured S(Q,!) shown in Fig. 1a.
It is particularly important to distinguish the multi-

particle excitations under investigation, which are an in-
trinsic property of helium, from multiple scattering. The
former arise when a neutron creates in a single process
a high energy perturbation which can decay into two or
more excitations, while the latter is a spurious e↵ect,
dependent on the sample size, where a single neutron
creates two or more excitations in successive scatter-
ing events. Since the two kinds of processes fulfill the
same kinematic conservation rules, and their contribu-
tions have similar intensity for typical sample sizes, sub-
tracting multiple scattering from the raw data is essential
when dealing with the multi-particle region of the spec-
trum.
It is di�cult in practice to determine this contribution
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within a recent Dynamic Many-Body theory [20]. The-
oretical and experimental results for S(Q,!) in a broad
sector of the spectrum can be compared directly, leading
to an unprecedentedly accurate description of the dynam-
ics of superfluid 4He.

The inelastic neutron scattering measurements were
performed on the neutron time-of-flight spectrometer IN5
at the Institut Laue-Langevin using an incoming energy
of 3.55meV (wavelength 4.8 Å) and an energy resolution
at elastic energy transfer of 0.07meV. The high-purity su-
perfluid 4He sample was contained in a thin-walled cylin-
drical aluminum container of inner diameter 15mm. The
e↵ective sample height in the beam was 50mm. Cad-
mium disks were placed inside the cell at intervals of
10mm to reduce multiple scattering, an important exper-
imental artifact discussed below. The cell was connected
to the mixing chamber of a dilution refrigerator via a
copper piece equipped with silver sinter to ensure good
thermal contact, thereby allowing measurements to be
done at very low temperatures, T < 100mK. The mea-
surements were performed at saturated vapor pressure.
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inelastic di↵erential scattering cross section per target
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where bc is the bound atom coherent scattering length, k
and k0 the neutron wave vector before and after the scat-
tering process, Q the wave vector transfer and ~! the
energy transfer [9]. Standard data reduction routines
[21] were used to obtain the dynamic structure factor
from the neutron raw spectra. The magnitude of S(Q,!)
was normalized by requiring that the single quasiparticle
strength Z(Q) = 0.93 for Q = 2.0 Å�1, a value ob-
tained from previous works [9, 10, 20]. Fig. 1a displays
essentially the raw data, after the usual corrections. The
aluminum cell elastic background, measured before in-
troducing the helium in the cell, was subtracted from
the raw spectra. This led to the noisy region seen in Fig.
1a near zero energy. We also subtracted the inelastic sig-
nal originating from scattering events involving the alu-
minum cell and the helium sample. Rotons, due to their
high density of states, dominate these processes, and this
contribution is only significant at the roton energy. Since
it is essentially Q-independent, it can be easily identified
and removed. The subtraction of this contribution spoils
the accuracy of the data in a small range around the ro-
ton energy in regions of the spectrum where the signal
is small. The e↵ect can be seen if the intensity scale is
considerably expanded, for instance as in Fig. 2.

While earlier neutron scattering experiments [10–13]
revealed the presence of broad, rather featureless multi-
particle excitation regions above the single-particle dis-
persion curve, the improved precision (and possibly the
much lower temperature) in the present experiment al-

FIG. 1. (color online) (a) S(Q,!) of superfluid 4He measured
as a function of wave vector and energy transfer, at satu-
rated vapor pressure and temperature T  100mK. Con-
tributions involving scattering with the aluminium cell have
been subtracted, but not multiple scattering within the he-
lium. (b) Helium multiple scattering contribution (numer-
ical simulation); note that its magnitude is comparable to
the multi-particle intensity seen in panels (c) and (d), and in
Fig. 3. The dashed lines show the limits of the instrumen-
tal range, also valid for figures a and c. (c) Experimental
dynamic structure factor S(Q,!) after correction for multi-
ple scattering. (d) Dynamic many-body theory calculation of
S(Q,!). Note that all the detailed features of the experimen-
tal data are reproduced. The units of the contour plots scale
are meV�1. The intensity is cut o↵ at 0.07meV�1 in order to
emphasize the multi-excitations region. The apparent width
of the Landau excitations in the experimental plot is due to
the experimental resolution of 0.07meV, while the calculated
Landau dispersion curve has been highlighted by a thick line.

lowed us to observe a very rich structure in this region,
with increasing weight at large wave vectors, as seen in
the measured S(Q,!) shown in Fig. 1a.
It is particularly important to distinguish the multi-

particle excitations under investigation, which are an in-
trinsic property of helium, from multiple scattering. The
former arise when a neutron creates in a single process
a high energy perturbation which can decay into two or
more excitations, while the latter is a spurious e↵ect,
dependent on the sample size, where a single neutron
creates two or more excitations in successive scatter-
ing events. Since the two kinds of processes fulfill the
same kinematic conservation rules, and their contribu-
tions have similar intensity for typical sample sizes, sub-
tracting multiple scattering from the raw data is essential
when dealing with the multi-particle region of the spec-
trum.
It is di�cult in practice to determine this contribution
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[21] were used to obtain the dynamic structure factor
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was normalized by requiring that the single quasiparticle
strength Z(Q) = 0.93 for Q = 2.0 Å�1, a value ob-
tained from previous works [9, 10, 20]. Fig. 1a displays
essentially the raw data, after the usual corrections. The
aluminum cell elastic background, measured before in-
troducing the helium in the cell, was subtracted from
the raw spectra. This led to the noisy region seen in Fig.
1a near zero energy. We also subtracted the inelastic sig-
nal originating from scattering events involving the alu-
minum cell and the helium sample. Rotons, due to their
high density of states, dominate these processes, and this
contribution is only significant at the roton energy. Since
it is essentially Q-independent, it can be easily identified
and removed. The subtraction of this contribution spoils
the accuracy of the data in a small range around the ro-
ton energy in regions of the spectrum where the signal
is small. The e↵ect can be seen if the intensity scale is
considerably expanded, for instance as in Fig. 2.

While earlier neutron scattering experiments [10–13]
revealed the presence of broad, rather featureless multi-
particle excitation regions above the single-particle dis-
persion curve, the improved precision (and possibly the
much lower temperature) in the present experiment al-
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rated vapor pressure and temperature T  100mK. Con-
tributions involving scattering with the aluminium cell have
been subtracted, but not multiple scattering within the he-
lium. (b) Helium multiple scattering contribution (numer-
ical simulation); note that its magnitude is comparable to
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where bc is the bound atom coherent scattering length, k
and k0 the neutron wave vector before and after the scat-
tering process, Q the wave vector transfer and ~! the
energy transfer [9]. Standard data reduction routines
[21] were used to obtain the dynamic structure factor
from the neutron raw spectra. The magnitude of S(Q,!)
was normalized by requiring that the single quasiparticle
strength Z(Q) = 0.93 for Q = 2.0 Å�1, a value ob-
tained from previous works [9, 10, 20]. Fig. 1a displays
essentially the raw data, after the usual corrections. The
aluminum cell elastic background, measured before in-
troducing the helium in the cell, was subtracted from
the raw spectra. This led to the noisy region seen in Fig.
1a near zero energy. We also subtracted the inelastic sig-
nal originating from scattering events involving the alu-
minum cell and the helium sample. Rotons, due to their
high density of states, dominate these processes, and this
contribution is only significant at the roton energy. Since
it is essentially Q-independent, it can be easily identified
and removed. The subtraction of this contribution spoils
the accuracy of the data in a small range around the ro-
ton energy in regions of the spectrum where the signal
is small. The e↵ect can be seen if the intensity scale is
considerably expanded, for instance as in Fig. 2.

While earlier neutron scattering experiments [10–13]
revealed the presence of broad, rather featureless multi-
particle excitation regions above the single-particle dis-
persion curve, the improved precision (and possibly the
much lower temperature) in the present experiment al-

FIG. 1. (color online) (a) S(Q,!) of superfluid 4He measured
as a function of wave vector and energy transfer, at satu-
rated vapor pressure and temperature T  100mK. Con-
tributions involving scattering with the aluminium cell have
been subtracted, but not multiple scattering within the he-
lium. (b) Helium multiple scattering contribution (numer-
ical simulation); note that its magnitude is comparable to
the multi-particle intensity seen in panels (c) and (d), and in
Fig. 3. The dashed lines show the limits of the instrumen-
tal range, also valid for figures a and c. (c) Experimental
dynamic structure factor S(Q,!) after correction for multi-
ple scattering. (d) Dynamic many-body theory calculation of
S(Q,!). Note that all the detailed features of the experimen-
tal data are reproduced. The units of the contour plots scale
are meV�1. The intensity is cut o↵ at 0.07meV�1 in order to
emphasize the multi-excitations region. The apparent width
of the Landau excitations in the experimental plot is due to
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with increasing weight at large wave vectors, as seen in
the measured S(Q,!) shown in Fig. 1a.
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particle excitations under investigation, which are an in-
trinsic property of helium, from multiple scattering. The
former arise when a neutron creates in a single process
a high energy perturbation which can decay into two or
more excitations, while the latter is a spurious e↵ect,
dependent on the sample size, where a single neutron
creates two or more excitations in successive scatter-
ing events. Since the two kinds of processes fulfill the
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tions have similar intensity for typical sample sizes, sub-
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MULTI-EXCITATIONS

▸ Calculated and observed for cold 
neutrons 

▸ However, this is in a very different 
kinematic regime 

▸ No existing calculations in regime 
of interest
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Calculation of the lifetime 

He use 2nd order perturbation theory to calculate the lifetime, 

i. e. we replace the "blob" in figure 2 by one phonon exchange : 

J2-
'[, 

We. will use "old-fashioned perturbation theory" which requires consideration 

of the following diagrams : 

o 
Interaction 

The interaction between neutrons and matter may be written as 

( II) 

where is the number density of nucleii with scattering length a in 

the matter. 

Follo.,ing Landau + Khalatnikov we write the number density of 

Helium as 
I 

t;r/J" + 
i'0;p. 
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I 
where S1= equilibrium mass density of the liquid, and QD Oil-

..£'{ f .../;l 

We take the matrix element 

of V(?) between neutron plane \;ave states e 
-) -\ 

the usual creation-annihilation operators. 

--Vf /rf:-!.),r <[JVV'Jjl'): f J'r5{r) f- f 

. ->- -+ ->- ( 1 I' Q-:;' -;\3 \(1-)(-.') 
Putting Q = Pf - Pi and USlilg ) cf"r e ::: Pllj d Q 

we obtain from (12) and (13) 

(13) 

1/ 13 "- I {i!;' C; r1l ([ ..., T '«(1) "-\. "1), 1 
/1" [cri J (Q-]Jt-)+ c:t J (llf/: )(14) r ./l 1/ 3/J.- ).... c.. 0 

f vl,u L t;.., 
which is to be evaluated between phonon-occupation number eigenstates. 

Phonon-Phonon Interaction 

are 

We take the third order part of the hydrodynamic Hamiltonian as given 

by Landau + Khalatnikov. 

3 f 
r 

(15) 

.pi where) .- the fluctuating part.of the mass density is given by times 

the second term in (II). If ,;e define U",," -'?{ J 2, -] if (Maris) 

(16) 

( 17) 

Internal note, R. Golub, 1977
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within a recent Dynamic Many-Body theory [20]. The-
oretical and experimental results for S(Q,!) in a broad
sector of the spectrum can be compared directly, leading
to an unprecedentedly accurate description of the dynam-
ics of superfluid 4He.

The inelastic neutron scattering measurements were
performed on the neutron time-of-flight spectrometer IN5
at the Institut Laue-Langevin using an incoming energy
of 3.55meV (wavelength 4.8 Å) and an energy resolution
at elastic energy transfer of 0.07meV. The high-purity su-
perfluid 4He sample was contained in a thin-walled cylin-
drical aluminum container of inner diameter 15mm. The
e↵ective sample height in the beam was 50mm. Cad-
mium disks were placed inside the cell at intervals of
10mm to reduce multiple scattering, an important exper-
imental artifact discussed below. The cell was connected
to the mixing chamber of a dilution refrigerator via a
copper piece equipped with silver sinter to ensure good
thermal contact, thereby allowing measurements to be
done at very low temperatures, T < 100mK. The mea-
surements were performed at saturated vapor pressure.

The quantity measured by a neutron spectrometer –the
inelastic di↵erential scattering cross section per target
atom– is proportional to the dynamic structure factor:
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where bc is the bound atom coherent scattering length, k
and k0 the neutron wave vector before and after the scat-
tering process, Q the wave vector transfer and ~! the
energy transfer [9]. Standard data reduction routines
[21] were used to obtain the dynamic structure factor
from the neutron raw spectra. The magnitude of S(Q,!)
was normalized by requiring that the single quasiparticle
strength Z(Q) = 0.93 for Q = 2.0 Å�1, a value ob-
tained from previous works [9, 10, 20]. Fig. 1a displays
essentially the raw data, after the usual corrections. The
aluminum cell elastic background, measured before in-
troducing the helium in the cell, was subtracted from
the raw spectra. This led to the noisy region seen in Fig.
1a near zero energy. We also subtracted the inelastic sig-
nal originating from scattering events involving the alu-
minum cell and the helium sample. Rotons, due to their
high density of states, dominate these processes, and this
contribution is only significant at the roton energy. Since
it is essentially Q-independent, it can be easily identified
and removed. The subtraction of this contribution spoils
the accuracy of the data in a small range around the ro-
ton energy in regions of the spectrum where the signal
is small. The e↵ect can be seen if the intensity scale is
considerably expanded, for instance as in Fig. 2.

While earlier neutron scattering experiments [10–13]
revealed the presence of broad, rather featureless multi-
particle excitation regions above the single-particle dis-
persion curve, the improved precision (and possibly the
much lower temperature) in the present experiment al-

FIG. 1. (color online) (a) S(Q,!) of superfluid 4He measured
as a function of wave vector and energy transfer, at satu-
rated vapor pressure and temperature T  100mK. Con-
tributions involving scattering with the aluminium cell have
been subtracted, but not multiple scattering within the he-
lium. (b) Helium multiple scattering contribution (numer-
ical simulation); note that its magnitude is comparable to
the multi-particle intensity seen in panels (c) and (d), and in
Fig. 3. The dashed lines show the limits of the instrumen-
tal range, also valid for figures a and c. (c) Experimental
dynamic structure factor S(Q,!) after correction for multi-
ple scattering. (d) Dynamic many-body theory calculation of
S(Q,!). Note that all the detailed features of the experimen-
tal data are reproduced. The units of the contour plots scale
are meV�1. The intensity is cut o↵ at 0.07meV�1 in order to
emphasize the multi-excitations region. The apparent width
of the Landau excitations in the experimental plot is due to
the experimental resolution of 0.07meV, while the calculated
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the measured S(Q,!) shown in Fig. 1a.
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trinsic property of helium, from multiple scattering. The
former arise when a neutron creates in a single process
a high energy perturbation which can decay into two or
more excitations, while the latter is a spurious e↵ect,
dependent on the sample size, where a single neutron
creates two or more excitations in successive scatter-
ing events. Since the two kinds of processes fulfill the
same kinematic conservation rules, and their contribu-
tions have similar intensity for typical sample sizes, sub-
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when dealing with the multi-particle region of the spec-
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within a recent Dynamic Many-Body theory [20]. The-
oretical and experimental results for S(Q,!) in a broad
sector of the spectrum can be compared directly, leading
to an unprecedentedly accurate description of the dynam-
ics of superfluid 4He.

The inelastic neutron scattering measurements were
performed on the neutron time-of-flight spectrometer IN5
at the Institut Laue-Langevin using an incoming energy
of 3.55meV (wavelength 4.8 Å) and an energy resolution
at elastic energy transfer of 0.07meV. The high-purity su-
perfluid 4He sample was contained in a thin-walled cylin-
drical aluminum container of inner diameter 15mm. The
e↵ective sample height in the beam was 50mm. Cad-
mium disks were placed inside the cell at intervals of
10mm to reduce multiple scattering, an important exper-
imental artifact discussed below. The cell was connected
to the mixing chamber of a dilution refrigerator via a
copper piece equipped with silver sinter to ensure good
thermal contact, thereby allowing measurements to be
done at very low temperatures, T < 100mK. The mea-
surements were performed at saturated vapor pressure.

The quantity measured by a neutron spectrometer –the
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where bc is the bound atom coherent scattering length, k
and k0 the neutron wave vector before and after the scat-
tering process, Q the wave vector transfer and ~! the
energy transfer [9]. Standard data reduction routines
[21] were used to obtain the dynamic structure factor
from the neutron raw spectra. The magnitude of S(Q,!)
was normalized by requiring that the single quasiparticle
strength Z(Q) = 0.93 for Q = 2.0 Å�1, a value ob-
tained from previous works [9, 10, 20]. Fig. 1a displays
essentially the raw data, after the usual corrections. The
aluminum cell elastic background, measured before in-
troducing the helium in the cell, was subtracted from
the raw spectra. This led to the noisy region seen in Fig.
1a near zero energy. We also subtracted the inelastic sig-
nal originating from scattering events involving the alu-
minum cell and the helium sample. Rotons, due to their
high density of states, dominate these processes, and this
contribution is only significant at the roton energy. Since
it is essentially Q-independent, it can be easily identified
and removed. The subtraction of this contribution spoils
the accuracy of the data in a small range around the ro-
ton energy in regions of the spectrum where the signal
is small. The e↵ect can be seen if the intensity scale is
considerably expanded, for instance as in Fig. 2.

While earlier neutron scattering experiments [10–13]
revealed the presence of broad, rather featureless multi-
particle excitation regions above the single-particle dis-
persion curve, the improved precision (and possibly the
much lower temperature) in the present experiment al-
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are meV�1. The intensity is cut o↵ at 0.07meV�1 in order to
emphasize the multi-excitations region. The apparent width
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the experimental resolution of 0.07meV, while the calculated
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creates two or more excitations in successive scatter-
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HELIUM

MULTI-EXCITATIONS

▸ emit back-to-back excitations to bleed off energy while 
conserving momentum

2

from the properties of the homogeneous liquid, and e↵ec-
tively acts as a force constant. One can show that it is re-
lated to the frequency by !2

k

= ⇢0k
2�(k) and that the fre-

quency of perturbations is given by !
k

= k2/2mHeS(k),
where S(k) is the static structure factor, related to the
two-point correlation function of perturbations in the liq-
uid, m2

HeS(k) = h⇢
k

⇢�k

i. In this work, we use S(k) as
measured in [5] in units of the unperturbed number den-
sity, n0 = ⇢0/mHe. This function scales linearly with k
at small k (k . 1 keV), and levels o↵ to 1 at high k with
a prominent intermediate peak.

From the commutation relation between the density
and velocity [6], writing ⇢ and ~v in terms of the usual
creation and annihilation operators we find
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Then expanding the Hamiltonian to the next (third) or-
der in perturbations, we find
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= 2.84, as measured by [7].

Note that the ⇢3 term does not grow with k once S(k)
asymptotes to 1, and is thus unimportant for energy de-
posits above approximately a meV. [KS: Still unsure
about this...]
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Multi-Excitation Scattering Rates. In order
to calculate the rate for DM downscattering from two-
excitation emission (illustrated in Figure 1), we need the
relevant vertices and Green’s function for the o↵-shell in-
termediate state. In our treatment, we follow the same
general procedure as [8], which computed the analogous
multi-excitation rates for neutron upscattering (the key
di↵erence being that neutron upscattering comes from
thermal phonons whereas in DM downscattering ather-
mal phonons are produced.)

The three-excitation vertex can be read o↵ from Equa-
tion (6). Meanwhile, for the interaction between the
helium nucleons and DM we will make use of the
Fermi pseudopotential for contact interactions, given by

V
XN

(r) = 2⇡a⇢(r)/(m
X

mHe), where where a is a scat-
tering length, related to the total cross-section 4⇡a2 =
�0. We will consider both massive and massless medi-
ators such that a picks up the momentum dependence
�0 = 16⇡↵

e

↵
X

m2
X

/(q2+m2
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)2. Finally, the Green’s func-
tion for the momentum transfer generally has the form
G(!) = (! + mHec

2
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s

q2); since v
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� c
s

, the !
term dominates.

From these potentials, one can construct the scattering
rate for a single DM particle, � = hn

T

�vreli via Fermi’s
golden rule:
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Three factors of V/(2⇡)3 come from the density of
states while an additional one comes from squaring the
momentum-conserving delta function that appears in the
three-excitation vertex (from the spatial integral). The
energy-conserving delta function is e↵ectively a selec-
tion rule. The angled brackets denote that we have
evaluated the appropriate sequence of operators between
second-quantized initial and final states
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��, respectively. Note that these are the appro-
priate initial and final states because we are specifically
interested in the production of athermal excitations. The
factors of 2 and 3! appearing in V3 have been absorbed
by the combinatorial labelling of momenta. In the limit
of ! ⇠ 1 meV, we reproduce the rate from [8].

This integral can be evaluated for a generic helium dis-
persion relation. Here we quote the result in the case that
the phonons are emitted back to back, ~k1 ⇡ �~k2 ⌘ ~k,
which is the necessary configuration when q ⌧ k, as is the
case for our scenario. Deviations from this approxima-
tion will have sub-percent e↵ects for DM scattering rate
in the keV-MeV mass range, owing to the small sound
speed of the fluid and the relatively high mass of helium
nuclei. In this simplified case, the analytic expressions
simplify substantially,
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where �(q) takes into account the momentum dependence
of the cross section; for a massive mediator �(q) = �0,
while for the massless mediator case �(q) = �0 (qref/q)4

where qref = 10�3m
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. The integral over k is readily
evaluated via composition with the delta function, �(!�
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are functions
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HELIUM

HOW TO CALCULATE?

▸ Theory developed by Landau-Khalatnikov and 
Feynman-Cohen 

▸ Quantize the fluid Hamiltonian, like SHO 

▸ Fluid is strongly coupled; excitations are propagating 
in interacting background (requires care)

H0 =
1

2

X

k

⇣
⇢0v~kv�~k + �(k)⇢~k⇢�~k

⌘
m2

HeS(k) = h⇢k⇢�ki
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HELIUM

RATE

▸ Compute 

▸ Or, use simulation data

G(q,!) ⇠ 1

!
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~q · ~k1U(k1) + ~q · ~k2U(k2) + q2U(k1)U(k2)
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2mHe(S(q)S(k1)S(k2))1/2
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FIG. 9. (Color online) The figure shows a comparison of some
of the experimental data [8,26,27,69], simulations [15,70], and our
FJEL calculations for the peak of S(k) as indicated in the inset.

predict a peak that is less than that predicted by the FJEL
theory; the effect is even more visible when one compares
with FJEL data at the same density. We have recently observed
the same effect in 3He in two dimensions [68], and will find
a similar feature in the peak of the static response function
below. The peak in S(k) is related to long-ranged oscillations
in the pair distribution function g(r), caused by the impending
liquid-solid phase transition. [We remind the reader that, in an
isotropic, homogeneous fluid, the dimensionless pair density is
the pair distribution function: g2(r1,r2) = g(r12); and S(k) − 1
is the dimensionless Fourier transform of g(r) − 1.] To get
this peak right, one must have the pair distribution function
at rather large distances; our FJEL calculations were carried
out in a box of 200 Å. Replacing g(r) for r > 10 Å with its
asymptotic value of 1 and calculating the Fourier transform,
this peak is much lowered. We are at this time not prepared to
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FIG. 10. (Color online) The figure shows color-coded (grayscale) plots of the dynamic structure function S(k,!ω) for six different densities.
Using a logarithmic scale, areas of high value of S(k,!ω) are dark (orange to red), areas of low strength are light (yellow to white). Circles are
experimental data for the phonon-roton dispersion relation from Ref. [29] in (b) and Ref. [8] at the higher densities where available. Squares
in (e) are data from Ref. [7]. The red line is the solution of the dispersion relation (6.2) where it can be determined in a meaningful way.
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from the properties of the homogeneous liquid, and e↵ec-
tively acts as a force constant. One can show that it is re-
lated to the frequency by !2

k

= ⇢0k
2�(k) and that the fre-

quency of perturbations is given by !
k

= k2/2mHeS(k),
where S(k) is the static structure factor, related to the
two-point correlation function of perturbations in the liq-
uid, m2

HeS(k) = h⇢
k

⇢�k

i. In this work, we use S(k) as
measured in [5] in units of the unperturbed number den-
sity, n0 = ⇢0/mHe. This function scales linearly with k
at small k (k . 1 keV), and levels o↵ to 1 at high k with
a prominent intermediate peak.

From the commutation relation between the density
and velocity [6], writing ⇢ and ~v in terms of the usual
creation and annihilation operators we find
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Then expanding the Hamiltonian to the next (third) or-
der in perturbations, we find
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At small k, � = c2
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/⇢0, and this term gives ��(⇢0)
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2
0
(2u0�1), where u0 = ⇢0
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�cs
�⇢0

= 2.84, as measured by [7].

Note that the ⇢3 term does not grow with k once S(k)
asymptotes to 1, and is thus unimportant for energy de-
posits above approximately a meV. [KS: Still unsure
about this...]
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Multi-Excitation Scattering Rates. In order
to calculate the rate for DM downscattering from two-
excitation emission (illustrated in Figure 1), we need the
relevant vertices and Green’s function for the o↵-shell in-
termediate state. In our treatment, we follow the same
general procedure as [8], which computed the analogous
multi-excitation rates for neutron upscattering (the key
di↵erence being that neutron upscattering comes from
thermal phonons whereas in DM downscattering ather-
mal phonons are produced.)

The three-excitation vertex can be read o↵ from Equa-
tion (6). Meanwhile, for the interaction between the
helium nucleons and DM we will make use of the
Fermi pseudopotential for contact interactions, given by

V
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X

mHe), where where a is a scat-
tering length, related to the total cross-section 4⇡a2 =
�0. We will consider both massive and massless medi-
ators such that a picks up the momentum dependence
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)2. Finally, the Green’s func-
tion for the momentum transfer generally has the form
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2
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q2); since v
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, the !
term dominates.

From these potentials, one can construct the scattering
rate for a single DM particle, � = hn

T

�vreli via Fermi’s
golden rule:
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Three factors of V/(2⇡)3 come from the density of
states while an additional one comes from squaring the
momentum-conserving delta function that appears in the
three-excitation vertex (from the spatial integral). The
energy-conserving delta function is e↵ectively a selec-
tion rule. The angled brackets denote that we have
evaluated the appropriate sequence of operators between
second-quantized initial and final states
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��, respectively. Note that these are the appro-
priate initial and final states because we are specifically
interested in the production of athermal excitations. The
factors of 2 and 3! appearing in V3 have been absorbed
by the combinatorial labelling of momenta. In the limit
of ! ⇠ 1 meV, we reproduce the rate from [8].

This integral can be evaluated for a generic helium dis-
persion relation. Here we quote the result in the case that
the phonons are emitted back to back, ~k1 ⇡ �~k2 ⌘ ~k,
which is the necessary configuration when q ⌧ k, as is the
case for our scenario. Deviations from this approxima-
tion will have sub-percent e↵ects for DM scattering rate
in the keV-MeV mass range, owing to the small sound
speed of the fluid and the relatively high mass of helium
nuclei. In this simplified case, the analytic expressions
simplify substantially,
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where A(k) = k2(�k2/4S(k)+m2
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(2u0�1)S(k))2 and
where �(q) takes into account the momentum dependence
of the cross section; for a massive mediator �(q) = �0,
while for the massless mediator case �(q) = �0 (qref/q)4

where qref = 10�3m
X

. The integral over k is readily
evaluated via composition with the delta function, �(!�
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are functions

3

these excitations must be nearly back-to-back in order to
conserve momentum. This configuration has suppressed
phase space, but we will show that the rate for this pro-
cess is non-zero. This is also confirmed by the observa-
tion of a response in superfluid helium away from the
single-excitation dispersion curve at energies well above
the 1.5 meV maximum energy for a single phonon (see
e.g. [33] for a theoretical calculation of multi-excitation
modes, and [34–36] for a discussion of experimental and
theoretical aspects of superfluid helium). Since we will
be focused on computing the rate for the multi-excitation
process when the DM mass is less than about 1 MeV, the
intermediate phonon state will carry less than ⇠1 keV of
momentum and have a linear dispersion.

In order to compute this rate, we apply Fermi’s golden
rule for the scattering rate,
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where the transition rate, following [37], is W
fi

=

|hMi|2 /16m2
X

m2
He. To compute the matrix element

|hMi|2, we need the relevant vertices (labeled V3 and
V
XN

in Fig. 1) and Green’s function for the o↵-shell in-
termediate state.

In the limit that the final state excitations (~k1,~k2)
are phonons with a linear dispersion, one can make use
of previous results for neutron upscattering in helium
[30, 31]. One key di↵erence with the case at hand is that
neutron upscattering occurs via a thermal phonon in the
initial state, whereas DM downscattering occurs via the
emission of two athermal phonons. A second crucial dif-
ference with the case of neutron downscattering is that,
above the two-phonon maximum energy 2� ' 3 meV,
the excitations are no longer phonons but instead behave
like free helium atoms.

We can read o↵ the appropriate matrix element from
the Hamiltonian via W
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= |V
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G(q, !)V3|2. Here
V
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= 2⇡a⇢(r)/(m
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mHe) in position space, where
a is the scattering length, related to the total cross-
section �
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= 4⇡a2. We will consider both massive and
light mediators such that in momentum space, �
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are between the mediator and the DM, proton, and neu-
tron, respectively. The Green’s function for momentum
transfer in the fluid has the form G(q, !) = (!+mHec
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and we are interested in energy deposits above 1 meV,
the dominant behavior can be approximated as G(!) ⇠
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In the limit of ! ⇠ 1 meV, where the dispersion is lin-

ear and S(k) ' k/2c
s

mHe, using Eq. (7), we reproduce
the expressions from [30, 31] with kinematics modified

appropriately for downscattering. We have also checked
that by amputating the three-excitation component of
the diagram in Fig. 1 and following the procedure above,
we indeed reproduce standard expressions for nuclear re-
coils, which we expect to be dominant when kinemati-
cally allowed.

The rate in Eq. (7) can be evaluated for a generic he-
lium dispersion relation and for generic configurations.
Here we quote the result in the case that the final state
excitations are emitted in a back-to-back configuration,
~k1 ⇡ �~k2 ⌘ ~k, which is necessary when q ⌧ k, as is the
case for DM lighter than 1 MeV. Deviations from this ap-
proximation will have small e↵ects on the scattering rate
for m

X

⇠ keV-MeV, owing to the small sound speed of
the fluid and the relatively high mass of helium nuclei.
Another simplification is that since we work in the per-
turbative regime below momentum transfers of ⇠1 keV,
S(q) = q/2c

s

mHe. Under these assumptions, the analytic
expressions simplify to
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Lastly, we comment on the size of the two-excitation
process relative to a three-excitation process. We com-
pute the three-excitation rate from the next term in the
expansion of the Hamiltonian, H4 and find that it is sup-
pressed by a factor of at least (mHe!)3/2mHe/24⇡2⇢0.
This starts to become O(1) when ! & 0.1 eV. We
also note that DM with m

X

. 1 MeV always deposits
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single-excitation dispersion curve at energies well above
the 1.5 meV maximum energy for a single phonon (see
e.g. [33] for a theoretical calculation of multi-excitation
modes, and [34–36] for a discussion of experimental and
theoretical aspects of superfluid helium). Since we will
be focused on computing the rate for the multi-excitation
process when the DM mass is less than about 1 MeV, the
intermediate phonon state will carry less than ⇠1 keV of
momentum and have a linear dispersion.
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|hMi|2, we need the relevant vertices (labeled V3 and
V
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in Fig. 1) and Green’s function for the o↵-shell in-
termediate state.

In the limit that the final state excitations (~k1,~k2)
are phonons with a linear dispersion, one can make use
of previous results for neutron upscattering in helium
[30, 31]. One key di↵erence with the case at hand is that
neutron upscattering occurs via a thermal phonon in the
initial state, whereas DM downscattering occurs via the
emission of two athermal phonons. A second crucial dif-
ference with the case of neutron downscattering is that,
above the two-phonon maximum energy 2� ' 3 meV,
the excitations are no longer phonons but instead behave
like free helium atoms.
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that by amputating the three-excitation component of
the diagram in Fig. 1 and following the procedure above,
we indeed reproduce standard expressions for nuclear re-
coils, which we expect to be dominant when kinemati-
cally allowed.

The rate in Eq. (7) can be evaluated for a generic he-
lium dispersion relation and for generic configurations.
Here we quote the result in the case that the final state
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Lastly, we comment on the size of the two-excitation
process relative to a three-excitation process. We com-
pute the three-excitation rate from the next term in the
expansion of the Hamiltonian, H4 and find that it is sup-
pressed by a factor of at least (mHe!)3/2mHe/24⇡2⇢0.
This starts to become O(1) when ! & 0.1 eV. We
also note that DM with m

X

. 1 MeV always deposits
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EXPERIMENTAL CONNECTIONS

ROAD FORWARD
▸ Large part depends on better energy resolution sensors 

(TESs); TESs are portable to multiple targets

Athermal*Phonon*Sensors*

Collect and Concentrate 
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SuperConducting Bias Rails (Al)

Superconducting Substrate (Ta)

Insulating layer

 TES and QP collection antennas (W) 

Athermal Phonon Collection Fins (Al)

Figure 1. Schematic designs for superconducting detectors that are sensitive to DM-electron scattering.
Left: Quasiparticles produced by a recoiling e� in a large aluminum arbsorber are collected by tungsten
quasiparticle collection fins and then their energy is sensed by a TES.Right: Athermal phonons produced
by a recoil e� in a large tantalum absorber are collected by aluminum collection fins and then their energy
is sensed by a TES.

athermal phonons and quasiparticles have very long lifetimes, and as such can potentially be

collected before they thermalize. Thus in the systems we consider, detection of DM operates via

the breaking of Cooper pairs in a superconducting target. We consider this idea in more detail

next.

2.2 Detector design with milli-eV sensitivity

Our detector concept is based on collecting and concentrating long lived athermal excitations

from DM interactions in a superconducting target absorber onto a small volume (and thus highly

sensitive) sensor. The collection and concentration of long lived excitations is a general concept

that has been a core principle of detector physics, from ionization in semiconductor CCDs to

athermal phonon collection in CDMS. Here we propose that this general detection philosophy be

applied in large volume (very pure, single crystal) superconductors to search for DM with mass

as low as the warm DM limit of a keV using standard superconducting sensor technology that

has been pushed to its ultimate theoretical sensitivity. A schematic of two proposed detector

concepts for light dark matter, that we describe in greater detail through the remainder of this

section, is shown in Fig. 1.

Detection of dark matter in such detectors is comprised of a three part process:

• Dark Matter Scattering on Target Absorber and Subsequent Excitation Production. A DM

particle scatters o↵ an e� in the target metal or superconducting absorber. In subse-

quent interactions, the recoil energy is converted into long lived athermal phonons and

quasiparticles.

• Collection of Excitations. The resulting excitations must be collected and concentrated

onto a small volume (and thus very sensitive) sensor; this is typically done via ‘collection

– 6 –
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Goal: ~1 meV
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mass
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Graphene
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conductors

Superfluid 
Helium

~eV energy 
resolution

~keV energy 
resolution

~meV energy 
resolution

ScintillatorsQCD axion, “ultralight frontier”

See talks tomorrow afternoon, 
Friday morning
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ROAD FORWARD

▸ New ideas for dark matter detection! 

▸ Moving beyond nuclear recoils into phases of matter 
crucial to access broader areas of DM parameter space 

▸ Target diversity essential.  What kinds of materials 
remain to be explored?
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▸ Leverage progress is materials and condensed matter physics 

▸ Realizing experimental program is 5-10+ years into future 

▸ Every step of R&D for current direct detection experiments 
(particularly SuperCDMS) can be applied to new dark matter 
candidates 

▸ Better energy resolution sensors portable between targets  

▸ Nine orders of magnitude increased sensitivity in mass 

▸ Long view necessary!
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